วันเสาร์ที่ 24 ตุลาคม พ.ศ. 2563

3.3 พันธะโคเวเลนต์

 3.3.1 การเกิดพันธะโคเวเลนต์

   พันธะโคเวเลนต์  คือ  พันธะเคมีที่เกิดขึ้นระหว่างอะตอมของธาตุอโลหะกับธาตุโลหะที่เข้ามาสร้างแรงยึดเหนี่ยวต่อกัน  เนื่องจากธาตุอโลหะจะมีสมบัติเป็นตัวรับอิเล็กตรอนที่ดีและยากต่อการสูญเสียอิเล็กตรอน  ดังนั้นอิเล็กตรอนของธาตุทั้งสองจึงต่างส่งแรงดึงดูดเพื่อที่จะดึงดูดอิเล็กตรอนของอีกฝ่ายให้เข้าหาตนเอง  ทำให้แรงดึงดูดจากนิวเคลียสของอะตอมทั้งสองหักล้างกัน  ดังนั้นอิเล็กตรอนจึงไม่มีการหลุดไปอยู่ในอะตอมใดอะตอมหนึ่งโดยเฉพาะ  แต่จะมีลักษณะเหมือนเป็นอิเล็กตรอนที่อยู่กึ่งกลางระหว่างอะตอมทั้งสอง  เรียกอิเล็กตรอนที่อยู่กึ่งกลางอะตอมทั้งสอง  เรียกอิเล็กตรอนที่ถูกอะตอมใช้ร่วมกันในการสร้างพันธะเคมีว่า  อิเล็กตรอนคู่ร่วมพันธะ(Bonding pair electron)     
     

     พันธะโคเวเลนต์ของอะตอมเกิดขึ้นจากการใช้อิเล็กตรอนร่วมกันของอะตอม  โดยอาจเกิดจากการใช้อิเล็กตรอนร่วมกันเพียงคู่เดียว  สองคู่  หรือสามคู่ก็ได้ขึ้นอยู่กับอะตอมคู่ที่เข้ามร่วมสร้างพันธะกันว่ายังขาดเวเลนซ์อิเล็กตรอนอยู่อีกเท่าใดจึงจะครบ 8 ตามกฎออกเตต  ดังนั้นพันธะโคเวเลนต์จึงสามารถแบ่งออกได้เป็น ชนิด  ตามจำนวนอิเล็กตรอนที่มีการใช้ร่วมกัน  ดังนี้
 1.พันธะเดี่ยว (single bond)  คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้ร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 1 คู่                          2.พันธะคู่ (double bond) คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 2 คู่                                                                         3.พันธะสาม (triple bond)  คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกัน  มีการใช้อิเล็กตรอนร่วมกัน คู่
                       


3.3.2 สูตรโมเลกุลและชื่อของสารโคเวเลนต์

    สูตรโมเลกุลของสารโคเวเลนต์โดยทั่วไปเขียนสัญลักษณ์ของธาตุองค์ประกอบโดยเรียงลำดับจากค่าอิเล็กโทรเนกาติวิตีน้อยไปมากพร้อมทั้งระบุจำนวนอะตอมของธาตุที่มีจำนวนอะตอมมากกว่า 1 อะตอมยกเว้นสามารถชนิดเช่น NH3 และ CH4 ทั้งที่ถ้าไนโตรเจนและธาตุคาร์บอนมีอิเล็กโทรเนกาติวิตีสูงกว่าธาตุไฮโดรเจน
การเรียกชื่อสารประกอบโคเวเลนต์ (Names of Covalent Compounds)
1.  อ่านชื่อธาตุที่อยู่ด้านหน้าก่อนตามด้วยธาตุที่อยู่ด้านหลัง โดยเปลี่ยนเสียงพยางค์ท้ายเป็น -ด์ (ide )
2.  อ่านระบุจำนวนอะตอมของธาตุด้วยเลขจำนวนในภาษากรีก ได้แก่
3.  ถ้าธาตุแรกมีอะตอมเดียว ไม่ต้องอ่านระบุจำนวนอะตอมของธาตุนั้น  แต่ถ้าธาตุหลังมีเพียงหนึ่งอะตอมก็ต้องระบุจำนวนอะตอมด้วยเสมอ

    ตัวอย่างการอ่านชื่อ
 
         CO2     อ่านว่า คาร์บอนไดออกไซด์

         CO       อ่านว่า คาร์บอนมอนออกไซด์
         BF3      อ่านว่า โบรอนไตรฟลูออไรด์           

         N2O     อ่านว่า ไดไนโตรเจนมอนอกไซด์
         N2O5    อ่านว่า ไดไนโตรเจนเพนตอกไซด์     

         P4O10  อ่านว่า เตตระฟอสฟอรัสเดคะออกไซด์
         OF2     อ่านว่า ออกซิเจนไดฟลูออไรด์          

         CCl4    อ่านว่า คาร์บอนเตตระคลอไรด์

3.3.3 ความยาวพันธะและพลังงานพันธะของสารโคเวเลนต์

   พลังงานพันธะ หมายถึง พลังงานที่น้อยที่สุดที่ใช้เพื่อสลายพันธะ
ที่ยึดเหนี่ยวระหว่างอะตอมคู่หนึ่งๆในโมเลกุลในสถานะแก๊ส  พลังงาน
พันธะสามารถบอกถึงความแข็งแรงของพันธะเคมีได้   โดยพันธะที่
แข็งแรงมากจะมีพลังงานพันธะมาก  และพันธะที่แข็งแรงน้อยจะมี
พลังงานพันธะน้อย
    พลังงานพันธะเฉลี่ย หมายถึง ค่าพลังงานเฉลี่ยของพลังงาน
สลายพันธะ ของอะตอมคู่หนึ่งๆ ซึ่งเฉลี่ยจากสารหลายชนิด เช่น การ
สลายโมเลกุลมีเทน (CH4) ให้กลายเป็นอะตอมคาร์บอนและ
ไฮโดรเจน มีสมการและค่าพลังงานที่เกี่ยวข้องดังนี้

CH4(g) + 435 kJ  →  CH3(g) + H(g)
CH3(g) + 453 kJ  →  CH2(g) + H(g)
CH2(g) + 425 kJ  →  CH(g)  + H(g)
CH(g)  + 339 kJ  →  C(g) + H(g)

เราจะเห็นได้ว่าการสลายพันธะระหว่าง C-H ในแต่ละพันธะของโมเลกุลมีเทน (CH4) จะใช้พลังงานไม่เท่ากัน ดังนั้น เมื่อนำค่าพลังงานทุกค่ามาเฉลี่ย  ก็จะได้เป็นค่าพลังงานพันธะเฉลี่ยนั่นเอง ดังแสดงในตาราง
     ความยาวพันธะ หมายถึง ระยะระหว่างจุดศูนย์กลางของนิวเคลียสของอะตอมทั้งสองที่เกิดพันธะกัน (หน่วยเป็น Angstrom , 10-10 m , A0 )
     จากหัวข้อการเกิดพันธะโคเวเลนต์ ทราบแล้วว่าอะตอม
ไฮโดรเจน 2 อะตอมเข้าใกล้กันเป็นระยะทาง 0.74 อังสตรอม (หรือ 
74 พิโคเมตร) ซึ่งเป็นระยะทางที่เหมาะสมในการเกิดพันธะโคเวเลนต์
ระหว่างไฮโดรเจน  โดยระยะนี้เรียกว่า "ความยาวพันธะ"  โดยปกติ
แล้วเราสามารถหาความยาวพันธะของสารได้จากการศึกษาการเลี้ยว
เบนของรังสีเอ็กซ์ (X-ray diffraction ; XRD) ผ่านผลึกของสาร  
ทั้งนี้ความยาวพันธะระหว่างอะตอมคู่เดียวกันในโมเลกุลของสารต่าง
ชนิดกัน จะมีค่าไม่เท่ากัน เช่น

สาร
สูตรโมเลกุล
ความยาวพันธะ O-H (pm)
น้ำ
H2O
95.8
เมทานอล
CH3OH
95.6

    
ดังนั้น ความยาวพันธะระหว่างอะตอมคู่หนึ่ง จึงหาได้จากค่าเฉลี่ย
ของความยาวพันธะระหว่างอะตอมคูjเดียวกันในโมเลกุลต่างๆ  เมื่อกล่าวถึงความยาวพันธะ โดยทั่วไปจึงหมายถึง ความยาวพันธะเฉลี่ย
    ความสัมพันธ์ระหว่างความยาวพันธะกับพลังงานพันธะ                                    ความยาวพันธะและพลังงานพันธะ จะสามารถเปรียบเทียบกันได้ก็ต่อเมื่อเป็นพันธะที่เกิดจากอะตอมของธาตุคู่เดียวกัน ถ้าเป็นอะตอมต่างคู่กันเทียบกันไม่ได้ เช่น

    ดังนั้น ถ้าความยาวพันธะยิ่งสั้น พลังงานพันธะก็จะยิ่งมาก หรือ
พันธะมีความเสถียรมาก  ซึ่งจากรูปเราสามารถสรุปได้ ดังนี้
1. ความยาวพันธะ พันธะเดี่ยว > พันธะคู่ > พันธะสาม
2. พลังงานพันธะ พันธะสาม > พันธะคู่ > พันธะเดี่ยว
Screenshot (159)
Screenshot (160)
ความแข็งแรง :   พันธะสาม   >  พันธะคู่  >   พันธะเดี่ยว

Screenshot (163)


3.3.4 รูปร่างโมเลกุล

จากการศึกษาสมบัติและโครงสร้างของสารต่าง ๆ จะพบว่าสารที่มีโครงสร้างต่างกันจะมีสมบัติต่างกัน ถึงแม้ว่าจะมีสูตรโมเลกุลเหมือนกันหรือไม่ก็ตาม เช่น เอทานอล และเมทานอล และเมทอกซีมีเทน ซึ่งมีสูตรโมเลกุลเป็น C2H6เหมือนกัน แต่มีสูตรโครงสร้างต่างกันจึงทำให้สารทั้งสองมีสมบัติต่างกันด้วย

 



จากตัวอย่างทั้งสองนี้แสดงให้เห็นว่า โครงสร้างโมเลกุล (รูปร่างโมเลกุล) มีความสัมพันธ์กับสมบัติของสาร ดังนั้นในการศึกษาสมบัติของสารจึงจำเป็นต้องทราบโครงสร้างโมเลกุลหรือรูปร่างโมเลกุลของสารนั้นด้วย

รูปร่างโมเลกุลโคเวลนต์
    การจัดเรียงอะตอมต่าง ๆ ในโมเลกุลโคเวเลนต์มีตำแหน่งและทิศทางที่แน่นอนจึงทำให้โมเลกุลโคเวเลนต์ของสารต่าง ๆ มีรูปร่างแตกต่างกัน สิ่งที่ใช้บอกรูปร่างโมเลกุลโคเวเลนต์ คือ การจัดเวเลนต์อิเล็กตรอนรอบอะตอมกลางของธาตุในโมเลกุลโคเวเลนต์ นอกจากนั้นความยาวพันธะและมุมระหว่างพันธะยังสามารถใช้บอกรูปร่างโมเลกุลได้ด้วย
ความยาวพันธะ(Bond length)  คือ ระยะทางระหว่างนิวเคลียสของอะตอมคู่หนึ่งที่มีพันธะต่อกัน 
มุมระหว่างพันธะ(Bond angle)  คือ มุมที่เกิดจากอะตอมสองอะตอมทำกับอะตอมกลางหรือมุมที่เกิดระหว่างพันธะสองพันธะ เช่น 


มุม เป็นมุมระหว่างพันธะในโมเลกุล yx2และมุมระหว่างพันธะจะกว้างหรือแคบขึ้นอยู่กับแรงผลักระหว่างอิเล็กตรอนคู่โดดเดี่ยวและอิเล็กตรอนคู่ร่วมพันธะรอบ ๆ อะตอมกลาง โดยถือหลักว่าโมเลกุลที่เสถียรจะต้องมีพลังงานต่ำ นั่นคือ อะตอมในโมเลกุลต้องจัดเรียงตัวกันเพื่อให้มแรงผลักของคู่อิเล็กตรอนให้น้อยที่สุด

การทำนายรูปร่างโมเลกุลโคเวเลนต์ 
โมเลกุลโคเวเลนต์จะมีรูปร่างเป็นอย่างไร พิจารณาจาก 
1. จำนวนอิเล็กตรอนคู่ร่วมพันธะรอบอะตอมกลาง (bonding electron)
2. จำนวนอิเล็กตรอนคู่โดดเดี่ยวรอบอะตอมกลาง (non bonding electron)
ดังนั้น การทำนายรูปร่างโมเลกุลให้เลือกอะตอมกลาง ซึ่งเป็นอะตอมที่สร้างพันธะได้มากที่สุดก่อน และนับจำนวนพันธะที่อะตอมกลางสร้างได้ และจำนวนอิเล็กตรอนคู่โดดเดี่ยวรอบอะตอมกลางนั้น แรงผลักทั้งหมดของคู่อิเล็กตรอนที่เกิดจากการสร้างพันธะ และไม่ได้สร้างพันธะจะทำให้เกิดรูปร่างโมเลกุลที่แตกต่างกันดังนี้

1. รูปร่างเส้นตรง ( Linear)
โมเลกุล BeCl2มีสูตรโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลาง Be ในโมเลกุล BeCl2มีเวเลนต์อิเล็กตรอนทั้งหมด 2 คู่ และทั้งสองคู่เป็นอิเล็กตรอนคู่ร่วมพันธะ ซึ่งจะเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปร่างเส้นตรง มีมุมระหว่างพันธะเป็น 1800 ดังรูป

 

2. รูปร่างสามเหลี่ยมแบนราบ (Trigonal plana)
อะตอมกลาง B ในโมเลกุล BCl3 มีเวเลนต์อิเล็กตรอนทั้งหมด 3 คู่ และทั้ง 3 คู่เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 3 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปสามเหลี่ยมแบนราบ มีมุมระหว่างพันธะเป็น 1200ดังรูป

3. รูปร่างทรงสี่หน้า (Tetarhedral)
โมเลกุลมีเธน (CH4) มีโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลาง C ในโมเลกุล CH4มีเวเลนต์อิเล็กตรอนทั้งหมด 4 คู่ และทั้ง 4 คู่เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 4 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุดทำให้โมเลกุลเป็นรูปทรงสี่หน้า มีมุมระหว่างพันธะเป็น 109.50ดังรูป

    สรุป  โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 4 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และไม่มีอิเล็กตรอนคู่โดดเดี่ยวโมเลกุลหรือไอออนนั้นจะมีรูปร่างเป็นทรงสี่หน้า
    ข้อสังเกตโมเลกุลฟอสฟอรัส (P4)อะตอม P มีเวเลนต์อิเล็กตรอน 5 สร้างพันธะเดี่ยวกับ P อะตอมอื่นอีก 3 อะตอมเหลืออิเล็กตรอนคู่โดดเดี่ยว 1 คู่ ผลักให้ทุกพันธะงอลง เกิดรูปร่างเป็นทรงสี่หน้า ชนิดที่ไม่มีอะตอมกลาง และมีมุมระหว่างพันธะ P - P - P เท่ากับ 600ทุกมุม ดังรูป

4. รูปร่างพีระมิดคู่ฐานสามเหลี่ยม (Trigonal bipyramiddal)
โมเลกุล PCl5 มีโครงสร้างแบบจุดและแบบเส้นดังนี้
 

อะตอมกลง P ในโมเลกุล PCl5มีเวเลนต์อิเล็กตรอนทั้งหมด 5 คู่ และทั้ง 5 คู่ เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 5 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปพีระมิดคู่ฐานสามเหลี่ยม มีมุมระหว่างพันธะเป็น 120 องศา และ 90 องศา ดังรูป

สรุป โมเลกุลหรือไอออนโคเวเลนต์ใด ถ้าอะตอมกลางมี 5 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และไม่มีอิเล็กตรอนคู่โดดเดี่ยวรูปร่างโมเลกุลหรือไอออนจะเป็นแบบ พีระมิดคู่ฐานสามเหลี่ยม 

5. รูปร่างทรงแปดหน้า (Octahedral)
ในโมเลกุล SF6 มีโครงสร้างแบบจุดและแบบเส้นดังนี้


อะตอมกลาง S ในโมเลกุล SF6 มีเวเลนต์อิเล็กตรอนทั้งหมด6คู่ และทั้ง6คู่ เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 6พันธะ ซึ่งเกิดจากการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปทรงแปดหน้า มีมุมระหว่างพันธะเป็น 90 องศา ดังรูป        


สรุป  โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 6 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และไม่มีอิเล็กตรอนคู่โดดเดี่ยว รูปร่างโมเลกุลหรือไอออนเป็นแบบ ทรงแปดหน้า 

อิเล็กตรอนคู่โดดเดี่ยวกับรูปร่างโมเลกุล
          โมเลกุลโคเวเลนต์ที่มีสูตรคล้ายกัน (คือ มีจำนวนอะตอมเป็นอัตราส่วนเท่ากัน) บางสารก็มีรูปร่างแตกต่างกัน เช่น BeF2และ BeCl2มีรูปร่างโมเลกุลแตกต่างกับ H2O และ H2S จากการพิจารณาพบว่าสิ่งที่ทำให้รูปร่างโมเลกุลของสารเหล่านี้ต่างกันก็คือ จำนวนเวเลนต์อิเล็กตรอนรอบอะตอมกลางในโมเลกุลว่ามีจำนวนอิเล็กตรอน คู่ร่วมพันธะ และจำนวนอิเล็กตรอนคู่โดดเดี่ยว แตกต่างกันอย่างไร

อิเล็กตรอนคู่ร่วมพันธะ (Bond pair electrons) คืออิเล็กตรอนคู่ที่ใช้ร่วมกันเพื่อเกิดพันธะขึ้น

อิเล็กตรอนคู่โดดเดี่ยว ( Lone pair electrons) คืออิเล็กตรอนที่ไม่ได้ใช้เกิดพันธะ

ตามปกติอิเล็กตรอนแต่ละคู่จะออกแรงผลักกัน แรงผลักระหว่างอิเล็กตรอนแต่ละคู่มากน้อยไม่เท่ากัน ซึ่งสามารถเขียนแรงผลักระหว่างอิเล็กตรอนคู่ต่าง ๆ จากมากไปหาน้อยได้ดังนี้
e คู่โดดเดี่ยว กับ e คู่โดดเดี่ยว > e คู่โดดเดี่ยว กับ e คู่ร่วมพันธะ > e คู่ร่วมพันธะกับ e คู่ร่วมพันธะ
การพิจารณารูปร่างโมเลกุลที่อะตอมกลางมีจำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวแตกต่างกันดังนี้

1. รูปร่างพีระมิดฐานสามเหลี่ยม (Trigonal pyramidal)
    โมเลกุล NH3 มีสูตรโครงสร้างดังนี้

อะตอมกลาง N ในโมเลกุล NH3 มีเวเลนต์อิเล็กตรอนทั้งหมด 4 คู่ มีอิเล็กตรอนคู่ร่วมพันธะ 3คู่ และอิเล็กตรอนคู่โดดเดี่ยว1คู่ อิเล็กตรอนทั้ง 4 คู่ รอบอะตอมกลางที่กล่าวนี้จะผลักกันให้ห่างมากที่สุด โดยพยายามปรับตัวให้อยู่ในแนวเส้นตรงที่ชี้ออกจากอะตอมกลางไปยังมุมทั้ง4ของรูปทรงสี่หน้าคล้ายกับมีเทน(CH4)และเนื่องจากแรงผลักระหว่างอิเล็กตรอนคู่โดดเดี่ยวกับอิเล็กตรอนคู่ร่วมพันธะของอะตอมNในNH3มีค่ามากว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะกับอิเล็กตรอนคู่ร่วมพันธะ จึงทำให้มุมระหว่างพันธะH - N - H ลดลงเหลือ 1070  และมีรูปร่างโมเลกุลเป็น รูปพีระมิดฐานสามเหลี่ยม ดังรูป

                  สรุป  โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 3 พันธะ (ไม่คำนึงถึงชนิดพันธะ) และมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 1 คู่ รูปร่างโมเลกุลหรือไอออนเป็นพีระมิดฐานสามเหลี่ยม (pyramidal)

2. รูปร่างโมเลกุลแบบมุมงอหรือตัววี  โมเลกุลของ H2O มีสูตรโครงสร้างดังนี้

                                

        อะตอมกลาง O ในโมเลกุล H2O มีเวเลนต์อิเล็กตรอนทั้งหมด 4 คู่ มีอิเล็กตรอนคู่ร่วมพันธะ 2 คู่ และอิเล็กตรอนคู่โดดเดี่ยว 2 คู่ อิเล็กตรอนทั้ง 4 คู่รอบอะตอมกลางนี้จะผลักกันให้ห่างกันมากที่สุดโดยพยายามปรับตัวให้อยู่ในแนวเส้นตรงที่ชี้ออกจากอะตอมกลางไปยังมุมทั้ง 4 ของรูปทรงสี่หน้าคล้ายกับมีเทน (CH4) และเนื่องจากอิเล็กตรอนคู่โดดเดี่ยวของ O ทั้ง 2 คู่เกิดแรงผลักมากกว่าอิเล็กตรอนคู่ร่วมพันธะจึงทำให้มุมระหว่างพันธะ H - O - H มีมุมลดลงเหลือ 1050 รูปร่างโมเลกุล จึงไม่เป็นเส้นตรงแต่เป็นรูปมุมงอหรือ รูปตัววี ดังรูป
                สรุป  โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 2 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 2 คู่ รูปร่างโมเลกุลหรือไอออนเป็นมุมงอหรือตัววี ( Bent or V -shaped)


3.3.5 สภาพขั้วโมเลกุลโคเวเลนต์

ธาตุที่มีจำนวนประจุในนิวเคลียสมาก แต่มีระยะระหว่างเวเลนต์อิเล็กตรอนกับนิวเคลียสห่างกันน้อยจะมีค่าอิเล็กโทรเนกาติวิตีสูงกว่าธาตุที่มีระยะระหว่างเวเลนต์อิเล็กตรอนกับนิวเคลียสห่างกันมาก
อะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูง มีแนวโน้มที่จะแสดงอำนาจไฟฟ้าลบ
อะตอมที่มีค่าอิเล็กโทรเนกาติวิตีต่ำ มีแนวโน้มที่จะแสดงอำนาจไฟฟ้าบวก
ลักษณะสำคัญของพันธะโคเวเลนต์ไม่มีขั้ว
1. เป็นพันธะโคเวเลนต์ที่เกิดกับคู่อะตอมของธาตุชนิดเดียวกัน
2. เป็นพันธะโคเวเลนต์ที่มีการกระจายอิเล็กตรอนให้แต่ละอะตอมเท่ากัน
3. พันธะโคเวเลนต์ไม่มีขั้วอาจจะเกิดกับพันธะโคเวเลนต์ชนิดพันธะเดี่ยว เช่น Cl - Cl พันธะโคเวเลนต์ชนิดพันธะคู่ เช่น O = O และพันธะโคเวเลนต์ชนิดพันธะสาม เช่น N N
4. พันธะโคเวเลนต์ที่ไม่มีขั้วเกิดในโมเลกุลใดเรียกว่า โมเลกุลไม่มีขั้ว (non- polar molecule)
ลักษณะสำคัญของพันธะโคเวเลนต์มีขั้ว
1. พันธะโคเวเลนต์มีขั้วเกิดกับคู่อะตอมของธาตุต่างชนิดกันที่มีค่าอิเล็กโทรเนกาติวิตีต่างกัน
2. เป็นพันธะโคเวเลนต์ที่มีการกระจายอิเล็กตรอนในแต่ละอะตอมไม่เท่ากัน
3. พันธะโคเวเลนต์มีขั้วเกิดในโมเลกุลใด โมเลกุลนั้นจะมีขั้วหรืออาจจะไม่มีขั้วก็ได้ แต่ถ้าพันธะโคเวเลนต์มีขั้ว เกิดในโมเลกุลที่มีเพียง 2 อะตอม โมเลกุลนั้นต้องเป็นโมเลกุลมีขั้วเสมอ
เขียนสัญลักษณ์แสดงขั้วของพันธะ                                                                                       ใช้เครื่องหมาย อ่านว่า เดลตา โดยกำหนดให้ว่า พันธะมีขั้วใดที่อะตอมแสดงอำนาจไฟฟ้าลบ (เป็นอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูง) ใช้เครื่องหมายแทนด้วย และพันธะโคเวเลนต์มีขั้วใดที่อะตอมแสดงอำนาจไฟฟ้าบวก (เป็นอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีต่ำ )ใช้เครื่องหมายแทนด้วย เช่น HF และ ClF
ขั้วของโมเลกุล จากความรู้เรื่องพันธะโคเวเลนต์มีขั้ว และพันธะโคเวเลนต์ไม่มีขั้วสามารถนำมาแบ่งประเภทของโมเลกุลโคเวเลนต์ได้เป็นโมเลกุลมีขั้ว และโมเลกุลไม่มีขั้ว แต่โมเลกุลโคเวเลนต์ใดจะเป็นโมเลกุลมีขั้ว หรือ ไม่มีขั้วนั้นสามารถพิจารณาได้ดังนี้
          ก. โมเลกุลที่มีเพียง 2 อะตอม
ถ้าโมเลกุลโคเวเลนต์ใดมีเพียง 2 อะตอม และเป็นอะตอมของธาตุชนิดเดียวกัน พันธะที่เกิดขึ้นในโมเลกุลเป็นพันธะโคเวเลนต์ไม่มีขั้ว ดังนั้น โมเลกุลก็จะเป็นโมเลกุลไม่มีขั้วด้วย เช่น H2, O2, N2
ถ้าโมเลกุลโคเวเลนต์ใดมีเพียง 2 อะตอม และเป็นอะตอมของธาตุต่างชนิดกัน พันธะที่เกิดขึ้นในโมเลกุลเป็นพันธะโคเวเลนต์มีขั้ว ดังนั้นโมเลกุลก็จะเป็นโมเลกุลมีขั้วด้วย เช่น HCl , ClF , HI
      ข. โมเลกุลที่มี 3 อะตอมหรือมากกว่า
ถ้าโมเลกุลที่เกิดจากพันธะมีขั้ว และมีรูปร่างของโมเลกุลสมมาตร โมเลกุลนั้นจะเป็นโมเลกุลไม่มีขั้ว เพราะมีผลรวมของทิศทางของแรงดึงดูดอิเล็กตรอนทั้งหมดในโมเลกุลเป็นศูนย์ เช่น



3.3.6 แรงยึดเหนี่ยวระหว่างโมเลกุลและสมบัติของสารโคเวเลนต์

    การเปลี่ยนสถานะของสารต้องมีการให้ความร้อนแก่สารเพื่อให้อนุภาคของสารมีพลังงานจลน์สูงพอที่จะหลุดออกจากกัน แสดงว่าสารแต่ละสถานะมีแรงยึดเหนี่ยวระหว่างโมเลกุล ซึ่งเรียงลำดับจากมากไปน้อยดังนี้ ของแข็ง > ของเหลว > ก๊าซ
          การเปลี่ยนสถานะของสารโคเวเลนต์ มีการทำลายแรงยึดเหนี่ยวระหว่างโมเลกุลเท่านั้นไม่มีการทำลายพันธะเคมี ดังนั้นสารที่มีจุดเดือดจุดหลอมเหลวสูง แสดงว่าแรงยึดเหนี่ยวระหว่างโมเลกุลสูง
ประเภทของแรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ มีดังนี้

  1. แรงลอนดอน ( london foece ) เป็นแรงยึดเหนี่ยวระหว่างโมเลกุล ยึดเหนี่ยวกันด้วยแรงอ่อนๆ ซึ่งเกิดขึ้นในสารทั่วไป และจะมีค่าเพิ่มขึ้นตามมวลโมเลกุลของสาร
  2. แรงดึงดูดระหว่างขั้ว ( dipole – dipole force ) เป็นแรงดึงดูดทางไฟฟ้าอันเนื่องมาจากแรงกระทำระหว่างขั้วบวกกับขั้วลบของโมเลกุลที่มีขั้ว *สารโคเวเลนต์ที่มีขั้ว มีแรงยึดเหนี่ยวระหว่างโมเลกุล 2ชนิดรวมอยู่ด้วยกันคือ แรงลอนดอนกับแรงดึงดูดระหว่างขั้ว และเรียกแรง 2แรงรวมกันว่า แรงแวนเดอร์วาลส์ *
  3. พันธะไฮโดรเจน ( hydrogen bond , H – bond ) คือ แรงดึงดูดระหว่างโมเลกุลที่เกิดจากไฮโดรเจนอะตอมสร้างพันธะโคเวเลนต์ กับอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูงๆและมีขนาดเล็ก ได้แก่ F , O และ N แล้วเกิดพันธะโคเวเลนต์มีขั้วชนิดมีสภาพขั้วแรงมาก ทั้งนี้เนื่องจากพันธะที่เกิดขึ้นนี้อิเล็กตรอนคู่รวมพันธะจะถูกดึงเข้ามาใกล้อะตอมของธาตุที่มีค่าอิเล็กโทรเนกาติวิตีสูง มากกว่าทางด้านอะตอมของไฮโดรเจนมาก และอะตอมของธาตุที่มีค่าอิเล็กโทรเนกาติวิตีสูง ยังมีอิเล็กตรอนคู่โดดเดี่ยว จึงเกิดดึงดูดกันระหว่างอิเล็กตรอนคู่โดดเดี่ยวกับอะตอมของไฮโดรเจนชึ่งมีอำนาจไฟฟ้าบวกสูงของอีกโมเลกุลหนึ่ง ทำให้เกิดเป็น พันธะไฮโดรเจน
Picture

   สมบัติของสารประกอบโคเวเลนต์                                                                            1. มีจุดเดือดจุดและหลอมเหลวต่ำ เพราะจะทำให้เดือดหรือหลอมเหลวต้องใช้พฃังงานไปในการทำลายแรงยึดเหนี่ยวระหว่างโมเลกุล ( ไม่ได้ ทำลายพันธะโคเวเลนต์ ยกเว้นโครงผลึกร่างตาข่าย ) อาจจะแบ่งสารโคเวนต์ตามจุดเดือด จุดหลอมเหลว จะได้ 4 พวกดังนี้                                                                                                                                                      1.1 สารโคเวเลนต์ไม่มีขั้ว พวกนี้จะมีจุดเดือดจุดหลอมเหลวต่ำกว่าพวกอื่นๆ เพราะโมเลกุลยึดเหนี่ยวกันด้วยแรงลอนดอนอย่างเดียวเท่านั้น                                                                  1.2 สารโคเวเลนต์มีขั้ว พวกนี้จะมีจุดเดือดจุดหลอมเหลวสูงกว่าพวกไม่มีขั้ว เพราะยึดเหนี่ยวโมเลกุลด้วยแรง 2 แรง คือแรงลอนดอลและแรงดึงดูดระหว่างขั้ว                                   1.3 สารโคเวเลนต์ที่สามารถสร้างพันธะไฮโดรเจนได้ เช่น HF , NH3 , H2O พวกนี้จะมีจุดเดือดจุดหลอมเหลวสูงกว่าสารโคเวเลนต์ที่มีขั้วเพราะโมเลกุลยึดเหนี่ยวกันด้วยแรงแวนเดอร์วาลส์และพันธะไฮโดรเจน                                                                                                  1.4โครงสร้างเป็นโครงผลึกร่างตาข่าย เช่น เพชร แกรไฟต์ คาร์บอรันดัม ซิลิกอนไดออกไซด์ พวกนี้มีจุดเดือดจุดหลอมเหลวสูงมากซึ่งโดยทั่วไปสารโคเวเลนต์มีจุดเดือดจุดหลอมเหลวต่ำ ที่เป็นเช่นนี้เพราะการจัดเรียงอะตอมภายในผลึก

2. สารโคเวเลนต์จะไม่นำไฟฟ้าไม่ว่าจะอยู่ในสถานะใด ( ยกเว้น แกรไฟต์ ) เนื่องจากไม่มีอิเล็กตรอนอิสระ และเมื่อหลอมเหลวไม่แตกตัว เป็นไอออน
3.โมเลกุลที่มีขั้วสามารถละลายในตัวทำละลายที่โมเลกุลมีขั้วได้ และโมเลกุลที่ไม่มีขั้วสามารถละลายในตัวทำละลายที่ไม่มีขั้วได้ (มีขั้วกับมีขั้ว , ไม่มีขั้วกับไม่มีขั้ว= ละลายกันได้ แต่มีขั้วกับไม่มีขั้วไม่ละลายกัน )
3.3.7 สารโคเวเลนต์ร่างตาข่าย
     สารโคเวเลนต์ที่ศึกษามาแล้วมีโครงสร้างโมเลกุลขนาดเล็ก มีจุดหลอมเหลวและจุดเดือดต่ำ แต่มีสารโคเวเลนต์บางชนิดมีจุดเดือดจุดหลอมเหลวจะสูงมาก  โครงสร้างโมเลกุลขนาดใหญ่เพราะเกาะกันแบบโครงร่างตาข่าย เรียกว่า สารโครงผลึกร่างตาข่าย เช่น เพชร  แกรไฟต์  SiC, SiO2
 เพชร (Diamond)   
เพชร เป็นอัญรูปหนึ่งของคาร์บอนและเป็นผลึกร่างตาข่าย โครงสร้างของเพชร ประกอบด้วยอะตอมของคาร์บอน  ซึ่งคาร์บอนแต่ละอะตอมใช้เวเลนซ์อิเล็กตรอนทั้งหมดสร้างพันธะแบบโคเวเลนต์กับอะตอมคาร์บอน ไม่นำไฟฟ้า เพราะว่าคาร์บอนสร้างพันธะไปทุกทิศทุกทาง ทำให้เพชรมีความแข็งมากกว่าอัญรูปอื่น ๆ ของคาร์บอน

Image result for สารโคเวเลนต์โครงผลึกร่างตาข่าย

แกรไฟต์ (Graphite)
แกรไฟต์ เป็นผลึกโคเวเลนต์และเป็นอีกรูปหนึ่งของคาร์บอนแต่มีโครงสร้างต่างจากเพชรคือ อะตอมคาร์บอนจะสร้างพันธะ โคเวเลนต์ต่อกันเป็นวง วงละ อะตอมต่อเนื่องกันอยู่ภายในระนาบเดียวกัน  ซึ่งการจัดเรียงตัวแบบโครงผลึกร่างตาข่ายนี้ทำให้แกรไฟต์มีจุดเดือดจุดหลอมเหลวสูง และสามารถนำไฟฟ้าได้  เนื่องจากคาร์บอนในโครงผลึกของ แกรไฟต์มี เวเลนซ์อิเล็กตรอน  แต่ละอะตอมสร้างพันธะกับคาร์บอนข้างเคียง อะตอม  จึงเหลืออีก 1อิเล็กตรอนอิสระที่สามารถเคลื่อนที่ได้ภายในชั้น และแต่ละชั้นไม่ได้สร้างพันธะกัน จึงทำให้ระหว่างชั้นไม่มีความแข็งแรงมาก สามารถเลื่อนไถลได้ง่าย ทำให้มีสมบัติในการหล่อลื่น เราจึงนำไปทำไส้ดินสอ สารหล่อลื่น เป็นต้น

Image result for สารโคเวเลนต์โครงผลึกร่างตาข่าย

ซิลิคอนไดออกไซด์ (SO2หรือซิลิกา
ซิลิคอนไดออกไซด์เป็นผลึกโคเวเลนต์ที่มีโครงสร้างเป็นผลึกร่างตาข่าย อะตอมของซิลิคอนจัดเรียงตัวเหมือนคาร์บอนในผลึกเพชร แต่มีออกซิเจนคั่นอยู่ระหว่างอะตอมของซิลิคอนแต่ละคู่ ผลึกซิลิคอนไดออกไซด์จึงมีจุดหลอมเหลวสูง และมีความแข็งสูง ใช้เป็นวัสดุในการทำแก้ว ทำส่วนประกอบของนาฬิกาควอร์ตซ์ ใยแก้วนำแสง

สารประกอบอื่นๆ ของซิลิคอนที่มีโครงสร้างเป็นโครงผลึกร่างตาข่าย ได้แก่ ซิลิคอนคาร์ไบด์ ( SiC ) หรือ คาร์โบรันดัม มีจุดหลอมเหลวสูง มีความแข็งมาก ใช้ทำเครื่องบด เครื่องโม่ หินลับมีด

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ข้อสอบเรื่องอะตอมและสมบัติของธาตุ

  1.  อะตอมประกอบไปด้วยโปรตอนและอิเล็กตรอนในจำนวนที่เท่า ๆ กัน คือ แบบจำลองอะตอมของใคร                                                      ...